

Multivariate statistics in R

Hannes PETER Martin BOUTROUX

This lecture benefits from teaching experience at different universities by Alexandre Buttler, François Gillet and Daniel Borcard.

Aims of the course

- Overview of principles of multidimensional data analysis
- Choice of statistical tools
- Learn how to use these tools
- Interpretation of the results
- Efficient communication with other experts
- Use

Course structure

- Wednesday 9:15 ~13:00
 - ~1h theoretical lecture
 - ~1h introduction to practical (commented R script)
 - Doubs river fish dataset
 - 1-2h hands-on practical work
 - oribatide mites datase
 - before you leave: briefly present your results to a teacher (~2-3 minutes)
- short paper discussions
 - read paper for discussion the following week
- group work

Tentative schedule

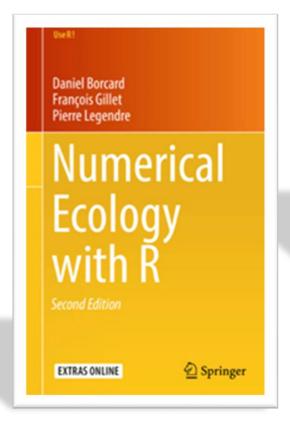
- 11.09. session 1 Introduction to multivariate statistics using R
- 18.09. session 2 Similarity and distance
- 25.09. group work define research topic
- 02.10. session 3 Cluster analysis
- □ 09.10. «modern R» with Martin (tidyverse)
- 16.10. group work cluster analysis
- 23.10. break
- 30.10. session 4 Ordination
- 06.11. session 5 Constrained ordination
- □ 13.11. mid-term exam, group work ordination techniques
- 20.11. session 6 Variance partitioning
- 27.11. session 7 Auxilliary multivariate tools
- 04.12./11.12. group work
- 18.12. hand in report
- 08.01. group presentations 1
- 15.01. group presentations 2

Evaluation

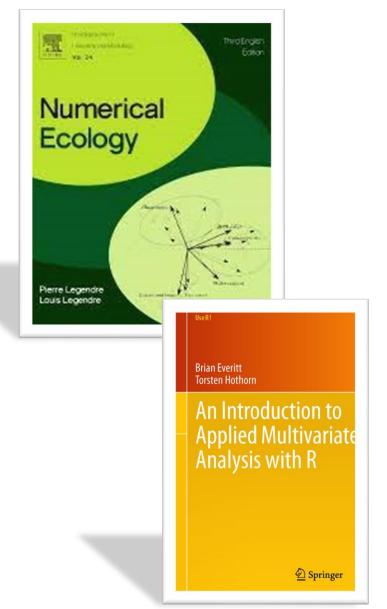
- mid-term exam (40%) (individual)
 - ca. 5 multiple-choice questions
 - 1-2 questions to develop

written report (30%) (group)

- introduction, background, hypotheses
- data source, types
- results, figures, tables
- discussion, interpretation, conclusions
- 8 pages <u>maximum</u>, 3 different multivariate analyses, ~5 Figures, deadline 18.12.2024
- oral presentation (30%) (group)
 - □ in January 2025, 10 + 5 minutes


Group projects


- 7 groups of 5 students
- define a research question
- collect/find data
- present research idea (1 page)
- perform multivariate analyses to address research question
- write report
- present results to the class


> Check moodle for data sources

material

http://www.numericaleco
logy.com/numecolR/index
.html

available as pdf

Online resources

https://ordination.okstate.edu/

https://www.davidzeleny.net/anadatr/doku.php/en:start

https://environmentalcomputing.net/statistics/ mvabund/

https://sites.google.com/site/mb3gustame/

Multivariate statistics (in Ecology)

- « Domain of quantitative ecology dealing with the numerical analysis of complex data » (Legendre & Legendre 1998)
- Origin in the ecology of biological communities (synecology, community ecology)
- Original numerical methods, often developed by ecologists (e.g. diversity/similarity measures)

Why is it important?

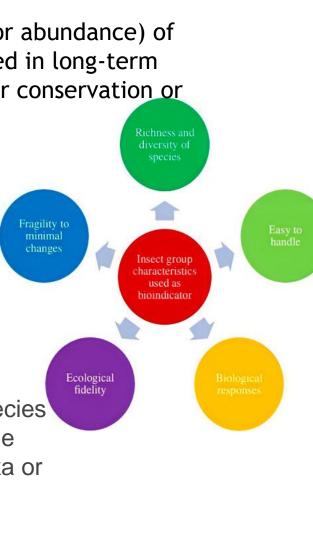
You will try to answer difficult questions about the complex world we live in.

Which test should I apply?

There is not a single «test», but rather a series of analyses - data exploration, model formulation, evaluation and interpretation is required.

Practical Example

Indicator Species Analysis (ISA)



Indicator Species

Monitoring the occurrence (or abundance) of indicator species is often used in long-term environmental monitoring for conservation or ecological management.

Indicator species:

- 1. reflect the environment (abiotic or biotic)
- 2. respond to environmental change
- 3. representative of other species (i.e. can be used to predict the diversity of other species, taxa or communities)

Indicator Species Analysis (ISA)

ISA requires classification of sample units into groups.

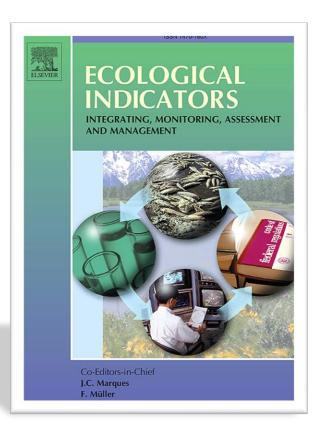
ISA involves calculating the **specificity** (Aij; relative abundance) and **fidelity** (Bij; relative frequency) of species *i* in group *j*. These values are then multiplied to yield the test statistic, the **Indicator Value** (IVij).

	Formula	Verbal Interpretation	Range	IndVal
Specificity / Relative Abundance:	$A_{ij} = rac{ar{x}_{ij}}{\sum_j ar{x}_{iullet}}$	Mean cover of species i in group j as a proportion of its mean cover in all groups	0 to 1	1.00
Fidelity / Relative Frequency:	$B_{ij} = rac{n_{ij}}{n_{ullet j}}$	Proportion of plots in group j on which species i occurs	0 to 1	0.75 -
Indicator Value:	$IV_{ij} = A_{ij} imes B_{ij} imes 100$	As proposed by Dufrêne & Legendre (1997)	0 to 100	<u>A</u> 0.50
	$IV_{ij} = \sqrt{A_{ij} imes B_{ij}}$	As reported in indicspecies::multipatt()	0 to 1	0.50 - 0.25 - 0.25 -
_	over of species <i>i</i> within group <i>j</i>			0.00 -
$\sum_{j} ar{x}_{iullet}$ is the sur	m of the mean cover of species <i>i</i> in a	all groups		0.00 0.25 0.50 0.75 1.00
	r of plots in group j occupied by speumber of plots in group j .	ecies i		Specificity (Aij)
				(0.0, 0.1] (0.2, 0.3] (0.4, 0.5] (0.6, 0.7] (0.8, 0.9]

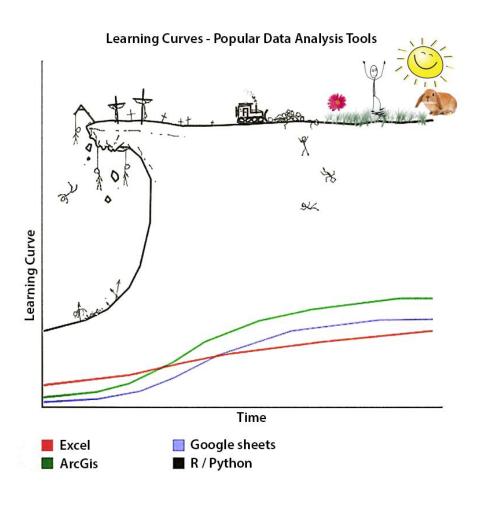
Heft 85, 2019
WSL Berichte
ISSN 2296-3456

Zustand und Entwicklung der Biotope von nationaler Bedeutung: Resultate 2011–2017 der Wirkungskontrolle Biotopschutz Schweiz

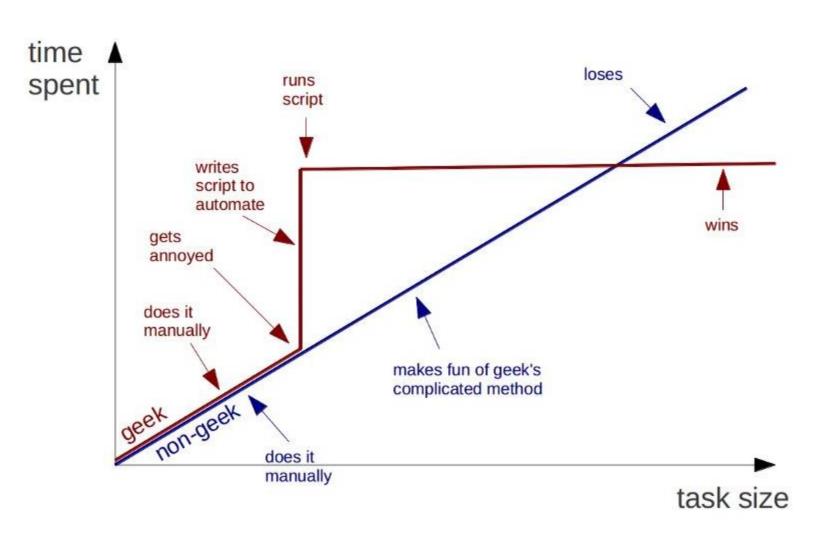
Ariel Bergamini, Christian Ginzler, Benedikt R. Sch Angéline Bedolla, Steffen Boch, Klaus Ecker, Ulric Helen Küchler, Meinrad Küchler, Oliver Dosch, Rolf Holdereger



Eidg, Forschungsanstalt für Wald, Schnee und CH-8903 Birmensdorf

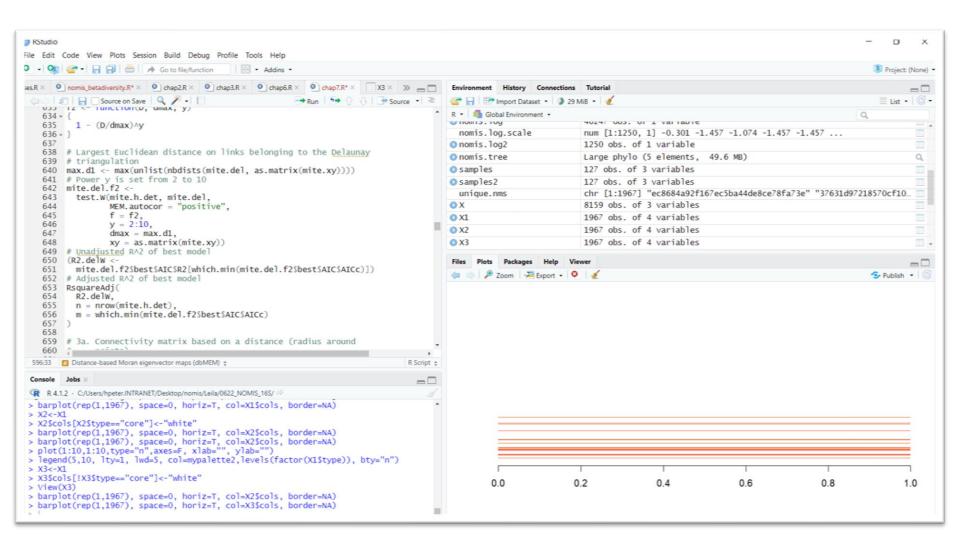

info fauna karch, Bellevaux 51, 2000 Neuch

Why R?



- freely available
- constant development
- professional visualization
- documentation and help
- large community (support)
- reproducability (code sharing)

https://nceas.github.io/oss-lessons/


Geeks and repetitive tasks

RStudio

Datasets used in this class

<u>built-in</u>

iris - Edgar Anderson's Iris Data

mtcars - Motor Trend Car Road Tests

doubs - Verneaux doubs fish

dune - Vegetation and Environment in Dutch Dune Meadows.

mite - Oribatid Mite Data with Explanatory Variables

BCI - Barro Colorado Island Tree Counts

varechem/varespec - Vegetation and environment in lichen pastures

own (group) datasets

R libraries used in this class

- vegan
 - ade4
- adespatial

• • •

CRAN -The Comprehensive R Archive Network

https://cran.r-project.org/

vegan: Community Ecology Package

Ordination methods, diversity analysis and other functions for community and vegetation ecologists.

Version: 2.6-2

Depends: $\underline{\text{permute}} \ (\geq 0.9\text{-}0), \, \underline{\text{lattice}}, \, \mathbb{R} \ (\geq 3.4.0)$

 Imports:
 MASS, cluster, mgcv

 Suggests:
 parallel, teltk, knitr, markdown

Published: 2022-04-17

Author: Jari Oksanen [aut, cre], Gavin L. Simpson [aut], F. Guillaume Blanchet [aut], Roeland Kindt [aut], Peter R. Minchin [aut], Peter R. Minchin [aut], Peter Solymos [aut], M. Henry H. Stevens [aut], Peter R. Minchin [aut], Peter R. Minchin [aut], Peter R. Minchin [aut], Peter Solymos [aut], M. Henry H. Stevens [aut], Peter R. Minchin [a

Eduard Szoecs [aut], Helene Wagner [aut], Matt Barbour [aut], Michael Bedward [aut], Ben Bolker [aut], Daniel Borcard [aut], Gustavo Carvalho [aut], Michael Chirico [aut], Miquel De Caceres [aut], Sebastien Durand [aut], Heloisa Beatriz Antoniazi Evangelista [aut], Rich FitzJohn [aut], Michael Friendly [aut], Brendan Furneaux [aut], Geoffrey Hannigan [aut], Mark O. Hill [aut], Leo Lahti [aut], Dan McGlinn [aut],

Marie-Helene Ouellette [aut], Eduardo Ribeiro Cunha [aut], Tyler Smith [aut], Adrian Stier [aut], Cajo J.F. Ter Braak [aut], James Weedon [aut]

Maintainer: Jari Oksanen <jhoksane at gmail.com>
BugReports: https://github.com/vegandevs/vegan/issues

License: GPL-2

URL: https://github.com/vegandevs/vegan

NeedsCompilation: yes

Materials: NEWS

In views: Environmetrics, Psychometrics, Spatial

CRAN checks: <u>vegan results</u>

Documentation:

Reference manual: vegan.pdf

Vignettes: <u>Design decisions and implementation</u>

Diversity analysis in vegan

Introduction to ordination in vegan

Partition of Variation

vegan FAO

Task views

reference manual

vignettes!

CRAN Task Views

CRAN Task View: Analysis of Ecological and Environmental Data

Maintainer: Gavin Simpson
Contact: ucfagls at gmail.com
Version: 2022-03-10

URL: https://CRAN.R-project.org/view=Environmetrics
Source: https://github.com/cran-task-views/Environmetrics/

Contributions: Suggestions and improvements for this task view are very welcome and can be made through issues or pull requests on GitHub or via e-mail to the maintainer address. For further details see the Contributing guide.

Citation: Gavin Simpson (2022). CRAN Task View: Analysis of Ecological and Environmental Data. Version 2022-03-10. URL https://CRAN.R-project.org/view=Environmetrics.

Installation: The packages from this task view can be installed automatically using the ctv package. For example, ctv::install.views("Environmetrics", coreOnly = TRUE) installs all the core packages or

ctv::update.views("Environmetrics") installs all packages that are not yet installed and up-to-date. See the CRAN Task View Initiative for more details.

Introduction

This Task View contains information about using R to analyse ecological and environmental data.

The base version of R ships with a wide range of functions for use within the field of environmetrics. This functionality is complemented by a plethora of packages available via CRAN, which provide specialist methods such as ordination & cluster analysis techniques. A brief overview of the available packages is provided in this Task View, grouped by topic or type of analysis. As a testament to the popularity of R for the analysis of environmental and ecological data, a special volume of the Journal of Statistical Software was produced in 2007.

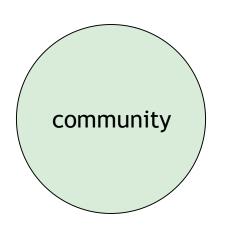
Those interested in environmetrics should consult the Spatial view. Complementary information is also available in the Cluster, and Spatio Temporal task views.

If you have any comments or suggestions for additions or improvements, then please contact the maintainer or submit an issue or pull request in the GitHub repository linked above.

A list of available packages and functions is presented below, grouped by analysis type.

General packages

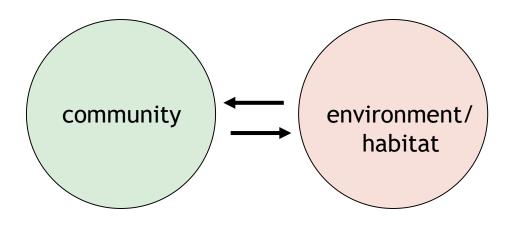
These packages are general, having wide applicability to the environmetrics field.


Package <u>EnvStats</u> is the successor to the S-PLUS module <u>EnvironmentalStats</u>, both by Steven Millard. A <u>user guide in the form of a book</u> has recently been released.

Modelling species responses and other data

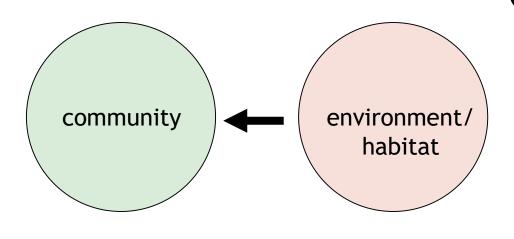
Analysing species response curves or modelling other data often involves the fitting of standard statistical models to ecological data and includes simple (multiple) regression, Generalized Linear Models (GLM), extended regression (e.g. Generalized Least Squares [GLS]), Generalized Additive Models (GAM), and mixed effects models, amongst others.

The base installation of R provides 1m() and g1m() for fitting linear and generalized linear models, respectively.



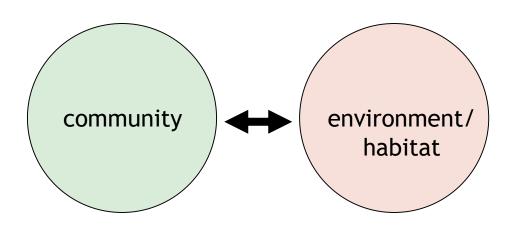
1. Independent description of community and environment

- Community structure, species composition, diversity, abundance distribution
- Spatial structure
- Temporal variation
- Observational and inductive approach, no hypotheses
- → Qualitative or intuitive links e.g. bioindicator



2. Simultaneous description of community and environment

- Correlation between biological and environmental data
- Quantitative empirical links
- No explanatory model, no hypotheses
- → Observational approach



« Response variables » « Explanatory variables »

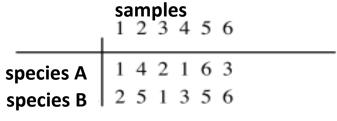
- 3. Unilateral influence of the habitat (explanatory variables) on the community (biological response)
 - Regression: biological versus environmental data
 - Empirical explanatory model
 - Observational (implicit causality), static
 - Experimental, manipulative (treatments), predictive, (explicit causality), kinetic
 - Deductive approach, hypotheses

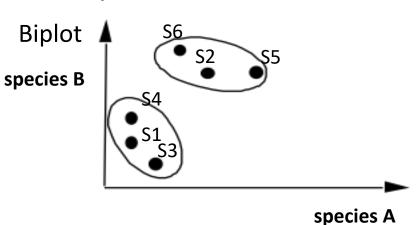
4. Reciprocal interactions between habitat and community

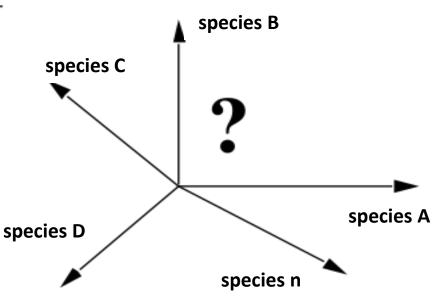
- Systemic approach
- Predictive, theoretical model (explicit causality with feedback effects), dynamic
- ⇒ Ecological simulations

Multidimensional ecological/environmental data

- Univariate analysis one variable
- Bivariate analysis two variables
- Multivariate analysis more than two variables Every object (sample) is characterized by several descriptors
 - Direct graphical representation is impossible beyond 3 dimensions




Unidimensional data


Bidimensional data

Multidimensional data

	samples						
	1 2 3 4 5 6						
species A	1 4 2 1 6 3						
species B	2 5 1 3 5 6						
species C	1 4 3 1 2 2						
species D	3 1 6 5 6 2						
species n	1 6 3 2 2 4						

Types of scientific tasks

most suited to the application of multivariate methods

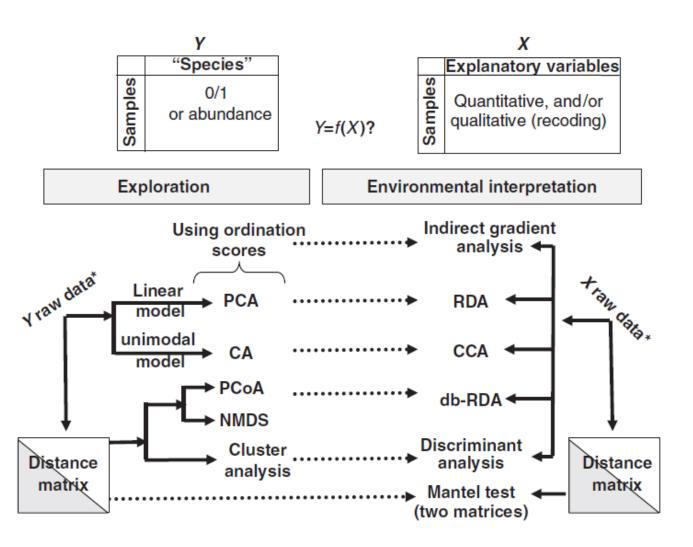
Data reduction and simplification

- the summary of multiple variables via a small set of (synthetic) variables. High-dimensional patterns are presented in a lower-dimensional space, aiding interpretation.
- Principal Component Analysis

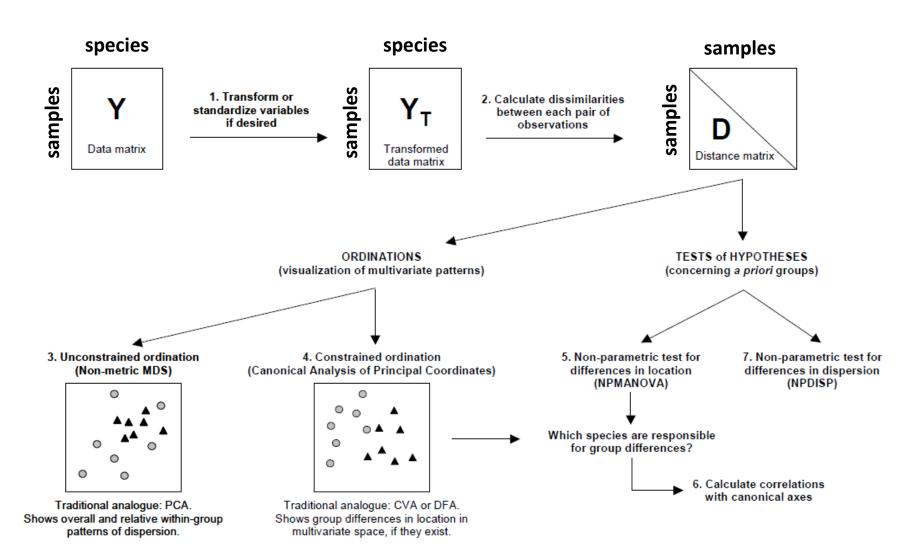
Sorting and grouping

- Tasks concerned with the similarity of samples and their assignment to groups.
- Cluster analysis

Investigation of dependence among variables


- Methods that detect dependence among variables are valuable in detecting influence or covariation.
- Redundancy Analysis

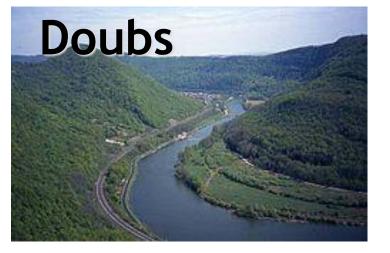
Hypothesis construction and testing


- Exploratory techniques can reveal patterns in data from which hypotheses may be constructed.
- Mantel test, PERMANOVA

Accurate choice of methods...

Accurate choice of methods...

Objects and descriptors


- Objects = observations
 - samples, field surveys, sites, experimental units
- Descriptors = measured variables
 - Biological variables
 - species, presence/absence, abundance (or their attributes)
 - traits
 - evolutionary/phylogenetic relationships
 - activity measurements
 - Environmental variables
 - temperature, pH, soil type, nutrients...
 - Spatial variables
 - Geographical coordinates (x, y), island size, latitude, ...

Descriptor types

- Binary (boolean, qualitative with two modalities)
 - Ex.: presence (1) or absence (0) of a species, terrestrial vs aquatic
- Multiple
 - Unsorted (nominal, qualitative multiclass, categorial)
 - Ex.: soil type, group affiliation (for instance following cluster analysis)
 - Sorted
 - Semi-quantitative (ordinal, rank)
 - Ex.: weak medium strong (coded 123)
 - Ex. : dominance code of a species (r + 1 2 3 4 5)
 - Quantitative (cardinal)
 - Discreet (integer)
 - Ex.: number of individuals of a species (abundance s.s.)
 - Continuous (numerical)
 - Ex.: biomass, altitude, activity rate measurement
- Synthetic (complex)
 - Ex. : relative abundance of a species
 - Ex. : C/N ratios of organic matter

environmental parameter

Variable	Code	Units
Distance from the source	dfs	km
Elevation	ele	m a.s.1.
Slope	slo	‰
Mean minimum discharge	dis	$m^3 \cdot s^{-1}$
pH of water	pН	-
Hardness (Ca concentration)	har	mg·L ⁻¹
Phosphate concentration	pho	mg·L ⁻¹
Nitrate concentration	nit	mg·L ⁻¹
Ammonium concentration	amm	mg·L ⁻¹
Dissolved oxygen	oxy	mg·L ⁻¹
Biological oxygen demand	bod	mg·L ^{−1}

+ spatial coordinates

Data(

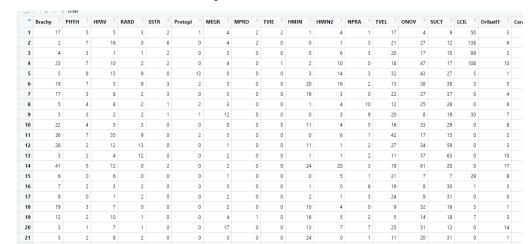
abundance of 27 fish species along 30 sites in the river Doubs

-									_					_	
	Cogo		Phph	Neba		Teso		Chto		Lece		Spbi	Gogo	Es lu	Pefl
1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	5	4	3	0	0	0	0	0	0	0	0	0	0	0
3	0	5	5	5	0	0	0	0	0	0	0	0	0	1	0
4	0	4	5	5	0	0	0	0	0	1	0	0	1	2	2
5	0	2	3	2	0	0	0	0	5	2	0	0	2	4	4
6	0	3	4	5	0	0	0	0	1	2	0	0	1	1	1
7	0	5	4	5	0	0	0	0	1	1	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	1	3	0	0	0	0	0	5	0	0	0	0	0
10	0	1	4	4	0	0	0	0	2	2	0	0	1	0	0
11	1	3	4	1	1	0	0	0	0	1	0	0	0	0	0
12	2	5	4	4	2	0	0	0	0	1	0	0	0	0	0
13	2	5	5	2	3	2	0	0	0	0	0	0	0	0	0
14	3	5	5	4	4	3	0	0	0	1	1	0	1	1	0
15	3	4	4	5	2	4	0	0	3	3	2	0	2	0	0
16	2	3	3	5	0	5	0	4	5	2	2	1	2	1	1
17	1	2	4	4	1	2	1	4	3	2	3	4	1	1	2
18	1	1	3	3	1	1	1	3	2	3	3	3	2	1	3
19	0	0	3	5	0	1	2	3	2	1	2	2	4	1	1
20	0	0	1	2	0	0	2	2	2	3	4	3	4	2	2
21	0	0	1	1	0	0	2	2	2	2	4	2	5	3	3
22	0	0	0	1	0	0	3	2	3	4	5	1	5	3	4

traits

_	sort	LatinName	Family	EnglishName	FrenchName **	BodyLength	BodyLengthMax **	ShapeFactor	TrophicLevel	omni
Cogo	1	Cottus gobio	Cottidae	Bullhead	Chabot commun	80	120	3.13	3.10	
Satr	2	Salmo trutta fario	Salmonidae	Brown trout	Truite fario	280	800	5.03	4.00	
Phph	3	Phoxinus phoxinus	Cyprinidae	Eurasian minnow	Vairon	60	100	2.95	3.10	
Babl	4	Barbatula barbatula	Nemacheilidae	Stone loach	Loche franche	80	130	4.50	3.10	
Thth	5	Thymallus thymallus	Salmonidae	Grayling	Ombre commun	300	450	4.33	3.10	
so	5	Telestes souffia	Cyprinidae	Vairone	Blageon	90	180	5.26	3.40	
Cna	7	Chondrostoma nasus	Cyprinidae	Common nase	Hotu	280	480	6.50	2.00	
Pato	8	Parachondrostoma toxostoma	Cyprinidae	South-west European nase	Toxostome	160	250	5.00	2.00	
Lele	9	Leuciscus leuciscus	Cyprinidae	Common dace	Vandoise	180	360	2.81	2.57	
Sqce	10	Squalius cephalus	Cyprinidae	European chub	Chevaine	240	500	3.97	3.50	

Verneaux J. 1973. - Cours d'eau de Franche-Comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie.



environmental parameter

	<u> </u>				_
	SubsDens	WatrCont	Substrate	Shrub	Торо
1	39.18	350.15	Sphagn1	Few	Hummocl
2	54.99	434.81	Litter	Few	Hummocl
3	46.07	371.72	Interface	Few	Hummocl
4	48.19	360.50	Sphagn1	Few	Hummocl
5	23.55	204.13	Sphagn1	Few	Hummocl
6	57.32	311.55	Sphagn1	Few	Hummocl
7	36.95	378.93	Sphagn1	Few	Hummocl
8	80.59	266.78	Interface	Many	Blanket
9	61.43	310.70	Litter	Many	Blanket
10	32.14	220.73	Sphagn1	Many	Hummocl
11	35.59	134.13	Sphagn3	Many	Blanket
12	46.80	405.91	Sphagn1	Few	Hummocl
13	27.97	243.70	Sphagn1	Many	Hummocl
14	37.25	239.51	Interface	Many	Blanket
15	59.93	350.64	Interface	Many	Blanket
16	35.41	321.87	Interface	Few	Hummocl
17	29.56	296.95	Interface	Many	Hummocl
18	25.84	276.44	Sphagn1	Many	Hummocl
19	44.10	383.83	Interface	Many	Blanket
20	38.61	145.68	Interface	Many	Hummocl
21	25.93	184.04	Sphagn4	Few	Hummocl
22	32.74	185.89	Sphagn1	Many	Hummocl

+ spatial coordinates

abundance of 35 species of mites in mosses collected in 70 sites in Montreal, Canada

Borcard, D., Legendre, P. & Drapeau, P. (1992) Partialling out the spatial component of ecological variation. *Ecology* 73: 1045-1055.